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Abstract—We develop a theory of volume polynomials of generalized virtual polytopes based
on the study of topology of affine subspace arrangements in a real Euclidean space. We ap-
ply this theory to obtain a topological version of the Bernstein–Kushnirenko theorem as well
as Stanley–Reisner and Pukhlikov–Khovanskii type descriptions for the cohomology rings of
generalized quasitoric manifolds.
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1. INTRODUCTION

In [24] A. V. Pukhlikov and the third author generalized the classical theory of finitely additive
measures of convex polytopes and proposed a geometric construction for a virtual polytope as a
Minkowski difference of two convex polytopes. Based on this notion, in [25] the same authors proved
a Riemann–Roch type theorem linking integrals and integer sums of quasipolynomials over convex
chains from a certain family. As a byproduct, they obtained a description of the cohomology ring
of a complex nonsingular projective toric variety via a volume polynomial of a virtual polytope.
A theory of mixed volumes of virtual convex bodies aimed at producing an “elementary” proof of
the classical g-theorem was developed in [26]; this theory was motivated by the ideas of [25] and
the approach of [22].

A topological generalization of a complex nonsingular projective toric variety is known in toric
topology as a (quasi)toric manifold. It was introduced and studied along with its real counterpart,
a small cover, in [7]. In particular, it was shown in [7] that the Stanley–Reisner description of the
cohomology rings holds for quasitoric manifolds. Since that time, quasitoric manifolds and their
generalization, torus manifolds [20, 10], have been intensively studied in toric topology and found
numerous valuable applications in homotopy theory [6, 9, 8], unitary [5, 19] and special unitary
bordism [18, 17], hyperbolic geometry [2–4], and other areas of research.

A remarkable property of torus manifolds is that they admit a combinatorial description similar
to the one available for toric varieties. Namely, instead of a fan, it is based on the notions of a
multi-fan and a multi-polytope, introduced and studied in [10]. A multi-fan is a collection of cones
that can overlap each other, unlike the classical case of cones in an ordinary fan.

A multi-polytope is a multi-fan along with a collection of affine hyperplanes orthogonal to the
linear spans of its rays. The relation between a multi-polytope and its multi-fan is similar to the one
between a polytope and its normal fan. In [1] the theory of multi-polytopes was applied to prove a
version of the Bernstein–Kushnirenko (or Bernstein–Khovanskii–Kushnirenko, BKK) theorem and
the Pukhlikov–Khovanskii type description for the cohomology rings of quasitoric manifolds. On
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GENERALIZED VIRTUAL POLYTOPES 127

the other hand, a Stanley–Reisner type description for the cohomology of certain torus manifolds
was obtained in [21] using methods and tools of the theory of manifolds with corners and equivariant
topology.

Smooth structures on quasitoric manifolds were constructed in [5] by means of a topological
analogue of the Cox construction, in which a coordinate subspace arrangement is replaced by a
moment–angle manifold. By the result of [23], moment–angle complexes over star-shaped spheres
have smooth structures. This allowed us in [15] to introduce the class of generalized quasitoric
manifolds consisting of quotient spaces of moment–angle complexes over star-shaped spheres by
freely acting compact tori of maximal possible rank. The class of generalized quasitoric manifolds is
closely related to the class of topological toric manifolds introduced in [12]. Indeed, any generalized
quasitoric manifold is a topological toric manifold with respect to the restriction of a smooth action
of the group (C∗)n to (S1)n. To emphasize this difference, here we keep using the term “generalized
quasitoric manifold.”

This paper is devoted to developing the theory of generalized virtual polytopes and applying it in
order to obtain a topological version of the BKK theorem as well as Stanley–Reisner and Pukhlikov–
Khovanskii type descriptions for the intersection rings of generalized quasitoric manifolds.

Generalized virtual polytopes and affine subspace arrangements. The first part of the
paper is devoted to the theory of generalized virtual polytopes and integration of forms over them,
based on studying the homotopy types of unions of affine subspace arrangements in real Euclidean
spaces. The construction and the theory of generalized virtual polytopes were motivated by the
properties of integral functionals on the space of smooth convex bodies. We discuss smooth convex
bodies in Section 2.

Let Q be a polynomial of degree at most k (homogeneous polynomial of degree k) on R
n,

ω = dx1 ∧ . . . ∧ dxn be the standard volume form on R
n, and Cs be the cone of strictly convex

bodies Δ ⊂ R
n with smooth boundary. Then the function

F (Δ) =

∫

Δ

Qω

on the cone Cs is a polynomial of degree at most k + n (homogeneous polynomial of degree k + n).
Now, to extend the domain of the integral functional to the entire vector space generated by the

cone Cs, we introduce the notion of a virtual convex body as a formal difference of two convex bodies
(with the usual identification Δ1 − Δ2 = Δ3 − Δ4 ⇔ Δ1 + Δ4 = Δ2 + Δ3). Then the following
statement summarizes the results of Section 2.

Let M be the space of virtual convex bodies representable as a difference of convex bodies from
the cone Cs. Then the functional F on Cs can be extended as an integral of the form Qω over the
chain of virtual convex bodies. Moreover, such an extension will be a polynomial on M .

In Section 3 we study the homological properties of unions X of (finite) arrangements of affine
subspaces {Li} in a real Euclidean space L = R

n by means of the nerves KX of their (closed)
coverings by the sets Li.

Given two affine subspace arrangements indexed by the same finite set of indices I, we say that
the nerve KX of the collection {Li} dominates the nerve KY of the collection {Mi} if

⋂
j∈J

Lj �= ∅ ⇒
⋂
j∈J

Mj �= ∅ ∀ J ⊂ I,

and we write KX ≥ KY in this case. Furthermore, we say that a continuous map f : X → Y is
compatible with KX and KY if

x ∈ Li1 ∩ . . . ∩ Lik ⇒ f(x) ∈ Mi1 ∩ . . . ∩Mik .
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128 I. Yu. LIMONCHENKO et al.

Our main tool in the study of the homological properties of unions of affine subspaces is the
following result.

(i) If a map f : X → Y compatible with KX and KY exists, then the condition KX ≥ KY holds.

(ii) If a map f : X → Y compatible with KX and KY exists, then it is unique up to homotopy.

(iii) If a nerve KX is isomorphic to a nerve KY and a map f : X → Y compatible with KX

and KY exists, then f is a homotopy equivalence between X and Y .

We then prove that any union X of affine subspaces has the so-called good triangulation (see
Definition 3.6) and use this fact to show that if KX ≥ KY , then there is a map f : X → Y compatible
with KX and KY .

Now, suppose we have an arrangement of affine hyperplanes {Hi} in L = R
n. We call it nonde-

generate if there is no proper linear subspace V ⊂ R
n which is parallel to all the hyperplanes Hi.

Then the union X of such an arrangement has the homotopy type of a wedge of (n− 1)-dimensional
spheres, in which the number of spheres is equal to the number of bounded regions in L \X (see also
Theorem 4.9). Therefore, each cycle Γ ∈ Hn−1(X,Z) can be represented as a linear combination
Γ =

∑
λj∂Δj , where each coefficient λj equals the winding number of the cycle Γ around a point

aj ∈ Δj \ ∂Δj. Here, Δj denotes the closure of a bounded open polyhedron representing a bounded
component of L \X.

In Section 4 we study the homotopy properties of unions X of (finite) arrangements of affine
subspaces {Li} in a real Euclidean space L = R

n by means of the methods developed in Section 3
and the theory of smooth convex bodies in the space L.

We say that two hyperplane arrangements H1 and H2 are combinatorially equivalent if the
corresponding nerves KH1 and KH2 are isomorphic. Let H = {H1, . . . ,Hs} and H′ = {H ′

1, . . . ,H
′
s}

be two combinatorially equivalent hyperplane arrangements, and let X =
⋃

Hi and Y =
⋃

H ′
i

be the corresponding unions of hyperplanes. Then there exists a canonical homotopy equivalence
f : X → Y . Moreover, we show that for any (finite) simplicial complex K there exists a (finite)
affine subspace arrangement {Li} such that the nerve of the (closed) covering of X by the sets Li

is homotopy equivalent to X and has the homotopy type of the simplicial complex K.
In order to study the homotopy type of a union of affine subspaces in R

n, we consider finite
unions U ⊂ R

n of open convex bodies: U =
⋃

Ui; our goal is reduced to studying the homotopy
type of the set Rn \ U . We will do it making use of the following notion from convex geometry. By
a tail cone tail(U) of a convex body U , we mean the set of points v ∈ R

n such that the inclusion
a+ tv ∈ U holds for any a ∈ U and t ≥ 0.

It is easy to see that for any convex set U ⊂ R
n its tail cone tail(U) has the following properties:

• the set tail(U) is a convex closed cone in R
n; a convex set U is bounded if and only if tail(U)

is the origin O ∈ R
n;

• if tail(U) is a vector space V , then for any transversal space V ′ (i.e., for any V ′ such that
R
n = V ⊕ V ′) the set U can be represented in the form U = U ′ ⊕ V , where U ′ = U ∩ V ′ is a

bounded convex set; that is, if tail(U) is a vector space, then one has U = U ′ ⊕ tail(U) for a
certain bounded convex set U ′.

Our main result in Section 4 can be stated as follows. The set R
n \ U is homotopy equivalent to

the set R
n \

⋃
{ai + tail(Ui)}, where the summation is taken over all i such that tail(Ui) is a vector

space.
Now, assume that all the linear spaces Vi = tail(Ui) above are equal to the same linear space V

and denote by T a subspace transversal to V , i.e., a linear subspace of R
n such that R

n = T ⊕ V .
Then the set Rn \ U is homotopy equivalent to T \ {bi}, where bi := T ∩ {ai + Vi}. This statement
completely describes the homotopy type of the set Rn \

⋃
Hi, where {Hi} is any collection of affine
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GENERALIZED VIRTUAL POLYTOPES 129

hyperplanes in R
n. Indeed, the complement R

n \
⋃

Hi is a union of open convex sets. Moreover,
the maximal linear subspaces contained in tail(Ui) are the same for each Ui: each of them is equal
to the intersection of the linear spaces H̃i parallel to the affine hyperplanes Hi.

Volumes of generalized virtual polytopes and intersection rings of generalized quasi-
toric manifolds. In the second part of the paper we apply the theory of volume polynomials of
generalized virtual polytopes to study the cohomology rings of generalized quasitoric manifolds.

First, we construct a special cellular structure for generalized quasitoric manifolds and deduce
monomial and linear relations between characteristic submanifolds of codimension 2 in their inter-
section rings. Then we prove a topological version of the BKK theorem, based on the properties of
the volume polynomial for a generalized virtual polytope, which yields a convex-theoretic formula
for the self-intersection polynomial on the second cohomology of a generalized quasitoric manifold.
Finally, we make use of the BKK theorem as well as the description of a Poincaré duality algebra
worked out in [25, 16] to obtain a Pukhlikov–Khovanskii type description of the cohomology ring
of a generalized quasitoric manifold.

In Section 5 we introduce the notion of a generalized virtual polytope and study the properties
of integral functionals on the space of generalized virtual polytopes. Suppose Δ is a triangulation
of an (n − 1)-dimensional sphere on the vertex set V (Δ) = {v1, . . . , vm}. In what follows, we will
identify a simplex of Δ with the set of its vertices viewed as a subset in {1, 2, . . . ,m}.

A map λ : V (Δ) → (Rn)∗ is called a characteristic map if for any vertices vi1 , . . . , vir belonging
to the same simplex of Δ the images λ(vi1), . . . , λ(vir ) are linearly independent (over R). Similarly,
one can define the notion of an integer characteristic map λ : V (Δ) → (Zn)∗.

Such a map defines an m-dimensional family of hyperplane arrangements AP in the following
way. For any h = (h1, . . . , hm) ∈ R

m, the arrangement AP(h) is given by

AP(h) = {H1, . . . ,Hm} with Hi = {�i(x) = hi},

where we denote by �i the linear function λ(vi) for each i ∈ [m] := {1, 2, . . . ,m}. Given a subset
I ⊂ [m], we also define HI =

⋂
j∈I Hj. If I ∈ Δ, then ΓI denotes the face dual to I in the polyhedral

complex Δ⊥ dual to the simplicial complex Δ. By definition, the facets of Δ⊥ are closed stars in Δ′

of the vertices of Δ viewed as vertices of its barycentric subdivision Δ′.
By a generalized virtual polytope we mean a map f : Δ⊥ →

⋃
AP(h)Hi subordinate to the char-

acteristic map λ; that is, for any I ⊂ [m], we have

f(ΓI) ⊂ HI .

Let U be a bounded region of Rn \
⋃

AP(h)Hi and W (U, f) be a winding number of a map f .
Given a polynomial Q on R

n, let us consider the following integral functional on the space of
generalized virtual polytopes:

IQ(f) :=
∑

W (U, f)

∫

U

Qω.

The key result of Section 5 is the computation of all partial derivatives of IQ(f), leading us to
the following statement. Let I = {i1, . . . , ir} ⊆ [m] be such that I /∈ Δ and k1, . . . , kr be positive
integers. Then we have

∂k1
i1

. . . ∂kr
ir
(IQ)(f) = 0.

However, if r = n = dimΔ+ 1 and I is a simplex in Δ dual to a vertex A ∈ Δ⊥, then we have

∂I(IQ)(f) = sgn(I)Q(A)|det(ei1 , . . . , ein)|.
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130 I. Yu. LIMONCHENKO et al.

We observe that the volume of the oriented image fh(Δ
⊥) ⊂ R

n is a function on the real
vector space L = {fh : Δ⊥ → R

n}, and its value Vol(fh) on a generalized virtual polytope fh is
a homogeneous polynomial in h1, . . . , hm of degree n. This observation and the previous result
yield the values of all the partial derivatives of order n for the volume polynomial Vol(fh) of the
generalized virtual polytope fh and hence give us this homogeneous polynomial itself.

We start Section 6 by recalling the notion of a generalized quasitoric manifold introduced in [15].
In what follows we assume that K = KΣ is a star-shaped sphere, i.e., an intersection of a complete
simplicial fan Σ in R

n � N ⊗Z R with the unit sphere Sn−1 ⊂ R
n. In this case, the moment–angle

complex ZK acquires a smooth structure (see [23]). Let further Λ: Σ(1) → N be a characteristic
map. Then the (m− n)-dimensional subtorus HΛ := ker expΛ ⊂ (S1)m acts freely on ZK , and the
smooth manifold XΣ,Λ := ZK/HΛ is called a generalized quasitoric manifold.

Our description of the cohomology of XΣ,Λ goes in three steps:

1. We provide a special cell decomposition for XΣ,Λ and show that H∗(XΣ,Λ) is generated by
the classes of characteristic submanifolds of codimension 2.

2. We deduce monomial and linear relations between classes of characteristic submanifolds of
codimension 2 in H∗(XΣ,Λ).

3. We prove a topological version of the BKK theorem for XΣ,Λ and then use it to get a
Pukhlikov–Khovanskii type description of the intersection ring H∗(XΣ,Λ).

It is worth mentioning that steps 2 and 3 above could be used in the much more general setting
of torus manifolds. However, in this general case the algebra obtained by the Pukhlikov–Khovanskii
description might be different from the intersection ring (cohomology ring). Indeed, the algebra
(Theorem 6.11) computed via the self-intersection polynomial (Theorem 6.6) is the Poincaré duality
quotient of the subalgebra of the cohomology ring generated by classes of characteristic submanifolds
of codimension 2.

2. SMOOTH CONVEX BODIES AND THE SPACE OF MAPS f : Sn−1 → R
n

In this section we consider a motivational construction of smooth virtual convex bodies.
Consider a set of smooth maps f : Sn−1 → R

n. Such a set forms a vector space under scaling
and pointwise addition of functions:

(f1 + f2)(x) = f1(x) + f2(x), (λf)(x) = λf(x).

For a strictly convex smooth body Δ ⊂ R
n, its boundary ∂Δ can be identified with the image

of the unit sphere under a Gauss map fΔ : Sn−1 → ∂Δ.
In terms of the support function HΔ of Δ, the map fΔ is equal to the restriction of the gradient

gradHΔ to the sphere Sn−1. Thus, we get an inclusion of the space of strictly convex smooth
bodies (and their formal differences) into the space of smooth maps from Sn−1 to R

n. This inclusion
respects the Minkowski addition of convex bodies.

We will be interested in integral functionals on the space of convex bodies. First notice that one
can express the integral

∫
Δ ω in terms of the corresponding map fΔ:∫

Δ

ω =

∫

Sn−1

f∗α,

where α is any form such that dα = ω.
Let α be an (n− 1)-form on R

n given by

α = P1 d̂x1 ∧ . . . ∧ dxn + . . . + Pn dx1 ∧ . . . ∧ d̂xn.

Here, d̂xi means that the term dxi is missing. The following theorem is obvious.
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Theorem 2.1. If all coefficients Pi of the form α are polynomials of degree at most k on R
n,

then the function
∫
Sn−1 f

∗α on the space of smooth maps f : Sn−1 → R
n is a polynomial of degree

at most k + n− 1.
If all coefficients Pi of the form α are homogeneous polynomials of degree k, then the function∫

Sn−1 f
∗α is a homogeneous polynomial of degree k + n− 1 on the space of smooth maps.

Integral functional on the space of maps and winding numbers. For an (n − 1)-
form α on R

n and a smooth map f : Sn−1 → R
n, one can use a different way to compute the

integral
∫
Sn−1 f

∗α. Let U ⊂ R
n be a connected component of Rn \ f(Sn−1).

Definition 2.2. The winding number W (U, f) of U with respect to f is the mapping degree
of the map

f − a

‖f − a‖ : Sn−1 → Sn−1, (2.1)

where a is any point in U .
The mapping degree is well defined, i.e., is independent of the choice of a ∈ U , since the

maps (2.1) for different a ∈ U are homotopic to each other.
Proposition 2.3. For any smooth (n− 1)-form α on R

n and any smooth map f : Sn−1 → R
n,

the following identity holds: ∫

Sn−1

f∗α =
∑

W (U, f)

∫

U

dα,

where the sum is taken over all connected components U of the complement Rn \ f(Sn−1).
Proof. This follows from the Stokes formula. �
Theorem 2.4. Let Q be a polynomial of degree at most k (homogeneous polynomial of degree k)

on R
n and let ω = dx1 ∧ . . . ∧ dxn be the standard volume form on R

n. Then the function
∑

W (U, f)

∫

U

Qω

on the space of smooth maps is a polynomial of degree at most k + n (homogeneous polynomial of
degree k + n).

Proof. Consider an (n− 1)-form α = P dx2 ∧ . . . ∧ dxn, where P is a polynomial of degree at
most k + 1 such that ∂P/∂x1 = Q. Clearly, dα = Qω. Thus the statement follows from Theorem 2.1
and Proposition 2.3. �

Let us denote by Cs the cone of strictly convex bodies Δ ⊂ R
n with smooth boundaries. As a

corollary, we obtain the following result.
Corollary 2.5. Let Q and ω be the same as before. Then the function

F (Δ) =

∫

Δ

Qω (2.2)

on the cone Cs is a polynomial of degree at most k + n (homogeneous polynomial of degree k + n).
Proof. Indeed, for the map f = gradHΔ : Sn−1 → R

n there are exactly two connected com-
ponents of R

n \ f(Sn−1): the component U1 = R
n \ Δ and the component U2 = int(Δ). The

corresponding winding numbers are W (U1, f) = 0 and W (U2, f) = 1. Thus, the statement follows
from Theorem 2.4. �

We would like to extend the integral functional to the vector space generated by the cone Cs.
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132 I. Yu. LIMONCHENKO et al.

Definition 2.6. 1. A virtual convex body is a formal difference of two convex bodies (with the
usual identification Δ1 −Δ2 = Δ3 −Δ4 ⇔ Δ1 +Δ4 = Δ2 +Δ3).

2. A support function of a virtual convex body Δ = Δ1 − Δ2 is the difference of the support
functions of Δ1 and Δ2.

3. A chain of virtual convex bodies with a smooth support function H is the set of connected
components U of the complement R

n \ gradH(Sn−1) taken with the coefficients W (U, gradH).
The following theorem summarizes the results of this section.
Theorem 2.7. Let M be the space of virtual convex bodies representable as differences of

convex bodies from the cone Cs. Then the function (2.2) on Cs can be extended to M as an integral
of the form Qω over the chain of virtual convex bodies. Moreover, such an extension is given by a
polynomial on M .

3. UNIONS OF AFFINE SUBSPACES

In this section we study homological properties of unions of (finite) affine subspace arrangements
in a vector space L � R

n. Let I be a finite set of indices. Consider a set {Li} of affine subspaces
in L indexed by elements i ∈ I, and let X =

⋃
i∈I Li be their union.

First, we define the main combinatorial invariant of a union of a collection of affine subspaces.
Note that the topological space X has a natural covering by the affine subspaces Li.

Definition 3.1. The nerve KX of the natural covering of X is the simplicial complex with
vertex set indexed by I (i.e., one vertex for each index i ∈ I). A set of vertices vi1 , . . . , vik defines
a simplex in KX if and only if the intersection Li1 ∩ . . . ∩ Lik is not empty.

Consider another collection of affine subspaces {Mi} in a vector space M indexed by the same
set I, with a nerve KY corresponding to the natural covering of their union Y .

Definition 3.2. We will say that the nerve KX of the collection {Li} dominates the nerve KY

of the collection {Mi} if
⋂
j∈J

Lj �= ∅ ⇒
⋂
j∈J

Mj �= ∅ ∀ J ⊂ I.

We will write KX ≥ KY in this case.
We say that the nerves KX and KY are equivalent if KX ≥ KY and KY ≥ KX .
Note that if KX ≥ KY , then there is a natural inclusion KX → KY . Moreover, if KX and KY

are equivalent, then this inclusion provides an isomorphism between these complexes.

3.1. Maps compatible with coverings. In this subsection we introduce our main tool in
the study of unions of affine subspace arrangements. Let, as before, X =

⋃
i∈I Li and Y =

⋃
i∈I Mi

be two collections of affine subspaces indexed by a finite set I. First, we will need the following
definition.

Definition 3.3. For a point x ∈ X =
⋃

i∈I Li, let I(x) be the subset of indices in I such that

x ∈ Li ⇔ i ∈ I(x).

For two points x ∈ X and y ∈ Y , we write x ≥ y if I(x) ⊃ I(y).
In particular, Definition 3.3 leads to the following notion.
Definition 3.4. A continuous map f : X → Y is compatible with KX and KY if x ≤ f(x) for

any x ∈ X, or, in other words, if

x ∈ Li1 ∩ . . . ∩ Lik ⇒ f(x) ∈ Mi1 ∩ . . . ∩Mik .
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GENERALIZED VIRTUAL POLYTOPES 133

The following theorem is our main tool in the study of homological properties of unions of affine
subspace arrangements.

Theorem 3.5. The following statements hold :

(i) if a map f : X → Y compatible with KX and KY exists, then the condition KX ≥ KY holds;
(ii) if a map f : X → Y compatible with KX and KY exists, then it is unique up to homotopy ;
(iii) if KX is isomorphic to KY , then the map f : X → Y compatible with KX and KY provides

a homotopy equivalence between X and Y .

Proof. (i) Assume a map f : X → Y compatible with KX and KY exists. Then KX ≥ KY .
Indeed, if the set Li1 ∩ . . . ∩ Lik is not empty and contains a point x, then the set Mi1 ∩ . . . ∩Mik

contains f(x) and, in particular, is nonempty.
(ii) If f and g are two maps from X to Y compatible with KX and KY , then for any 0 ≤ t ≤ 1

the map tf + (1− t)g is also compatible with KX and KY . Indeed, for any x ∈ X, the set of points
y ∈ Y such that I(x) ⊂ I(y) is convex.

(iii) Assume that KX and KY are isomorphic and there are maps f : X → Y and g : Y → X
compatible with KX and KY . Then the map g ◦ f : X → X is a homotopy equivalence. Indeed, the
identity map IdX and the composition map g ◦ f are compatible with KX and hence are homotopy
equivalent by statement (ii). Similarly, the composition map f ◦ g : Y → Y is homotopic to the
identity map IdY . �

To prove the existence of compatible maps, we will need the following definitions.
Definition 3.6. A good triangulation of the set X =

⋃
i∈I Li is a triangulation such that the

following condition holds: the vertex set of a simplex S in a good triangulation is totally ordered
in the sense of Definition 3.3. In other words, there is an order on the vertex set {vi1 , . . . , vis} of S
such that

I(vi1) ⊂ . . . ⊂ I(vis).

Definition 3.7. Consider the following natural stratification of X =
⋃

i∈I Li by open strata of
different dimensions: we say that two points x, y ∈ X belong to one stratum if x ≥ y and y ≥ x,
or equivalently, I(x) = I(y). The stratum containing the point x is the intersection L(x) of the
subspaces Li for all i ∈ I(x) with the removed union of the subspaces Li for all i /∈ I(x).

Definition 3.8. A stratum U1 of the natural stratification of X is bigger than a stratum U2

of the same stratification (U1 ≥ U2) if the closure of U1 contains U2.
It is easy to see that U1 ≥ U2 if and only if the relation x ≥ y holds for any x ∈ U1 and y ∈ U2.
Definition 3.9. A stratum U has rank k if the longest possible chain of strictly decreasing

strata U = U1 > . . . > Uk has length k.
Theorem 3.10. For any finite union X =

⋃
Li of affine subspaces Li in a linear space L,

one can construct a good triangulation of X.
Proof. We construct a good triangulation for X in two steps. First, we construct a triangula-

tion compatible with the natural stratification of X, i.e., a triangulation such that any open simplex
is contained in a certain open stratum.

A triangulation compatible with the natural stratification of X can be constructed inductively
by first triangulating all strata of rank 1 (i.e., all closed strata) and then extending it to all strata
of rank higher by one at each step.

Then one can construct a good triangulation for X by taking a barycentric subdivision of any
triangulation of X compatible with the standard (natural) stratification. Indeed, the set of vertices
of each simplex in this subdivision corresponds to an increasing chain of faces of a simplex in the
original triangulation, which are contained in an increasing chain of strata. �
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Theorem 3.11. If KX ≥ KY , then there exists a map f : X → Y compatible with KX

and KY .
Proof. First, let us consider a good triangulation τ of X. Then, for any vertex v of τ , let us

define the value f(v) to be any point in Y such that I(f(x)) ⊃ I(x). Such a point always exists
since KX ≥ KY . Then we can extend the map f linearly to each simplex of τ .

The map f constructed above is compatible with KX and KY . Indeed, for any point x ∈ X,
there exists a smallest simplex S of the good triangulation for X such that x ∈ S. Among the
vertices V (S) of this simplex S, there exists a biggest vertex v. It is easy to see that I(x) = I(v).
Since f(x) belongs to the linear combination of the points f(vi) with vi ∈ V (S), the inclusion
I(f(x)) ⊃ I(x) holds. �

3.2. Barycentric subdivision and a covering of a simplicial complex. We will need
some general facts related to barycentric subdivisions of simplicial complexes.

Let C ′ be the simplicial complex obtained by the barycentric subdivision of a given simplicial
complex C. Each vertex of C ′ is the barycenter of a certain simplex of C. A set of vertices of C ′

belongs to one simplex of C ′ if and only if the simplices of C corresponding to these vertices are
totally ordered with respect to inclusion.

With each vertex v of C let us associate the closed subset Xv of C ′ equal to the union of all
simplices of C ′ containing the vertex v.

Lemma 3.12. 1. The nerve of the covering of C ′ by the collection of closed subsets Xv

corresponding to all vertices v of C coincides with the original complex C.
2. All sets Xv and their nonempty intersections are homotopy equivalent to a point.
Proof. 1. By definition, the set of vertices v of C can by identified with the set of subsets Xv ,

which provides a covering of C ′. If vertices v1, . . . , vk belong to one simplex of C, then the sets
Xv1 , . . . ,Xvk contain the barycenter of that simplex, and so these sets have a nonempty intersection.

Conversely, a set Xv intersects a simplex Δ of the complex C only if v is a vertex of Δ. Thus,
if the intersection Xv1 ∩ . . . ∩Xvk is not empty, then v1, . . . , vk belong to a simplex Δ of C.

2. Any nonempty intersection Xv1 ∩ . . . ∩Xvk can be represented as a union of some simplices
of C ′ containing a common vertex, which is the barycenter of the simplex with the vertices v1, . . . , vk.
Observe that such a union is a cone; hence it is homotopy equivalent to a point. �

3.3. Maps f : K ′
X → Y in the case KX ≥ KY . A continuous map f : K ′

X → Y is compatible
with the natural coverings

BKX =
⋃
i∈I

Xvi and Y =
⋃
i∈I

Mi

if the inclusion f(Xvi) ⊂ Mi holds for any i ∈ I.
Suppose that KX ≥ KY . Let KX be the nerve of the natural covering of X =

⋃
i∈I Li. The

barycentric subdivision K ′
X of KX has its own natural covering by the sets L̂i equal to the unions

of the simplices in K ′
X which contain the vertex vi corresponding to the space Li. By Lemma 3.12,

the nerve of this covering of K ′
X is isomorphic to KX . Now, let us generalize the definition of a

map between topological spaces that is compatible with their coverings. Suppose I is a finite set of
indices. Consider a set {Xi} of closed subsets of X indexed by elements i ∈ I.

Definition 3.13. The nerve KX of the covering X =
⋃

Xi is the simplicial complex whose
vertex set VX contains one vertex vi for each subset Xi, i.e., one vertex for each index i ∈ I. A set
of vertices vi1 , . . . , vik defines a simplex in KX if and only if the intersection Xi1 ∩ . . . ∩Xik is not
empty.

The following theorem can be proved in exactly the same way as Theorem 3.5.
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Theorem 3.14. 1. A map f : K ′
X → Y compatible with KX and KY exists if and only if the

condition KX ≥ KY holds.

2. If a map compatible with KX and KY exists, then it is unique up to homotopy.

4. HOMOTOPY TYPE OF A UNION OF AN AFFINE SUBSPACE ARRANGEMENT

In this section we study the homotopy type of a union of an affine subspace arrangement. In
particular, we show that a union of a collection of affine subspaces can have a homotopy type of
any simplicial complex (Theorem 4.4), whereas a union of affine hyperplanes is always homotopic
to a wedge of spheres (Theorem 4.9).

Consider a finite set {Ai} of affinely independent points in a real vector space L. Let T ⊂ L
be the simplex on the vertex set {Ai}. Along with each face TJ of T , consider the affine hull LTJ

of TJ . We obtain a collection of affine subspaces in L corresponding to the faces TJ .
Recall that a subspace A of a topological space X is called a strong deformation retract of X if

there is a homotopy π(x, t) : X × I → X such that

(i) π(x, 0) = x for any x ∈ X;
(ii) π(x, 1) ∈ A for any x ∈ X;
(iii) π(a, t) = a for any a ∈ A and t ∈ I.

Lemma 4.1. The simplex T is a strong deformation retract of the union of hyperplanes in L.
Moreover, the deformation retraction π : L× I → L can be chosen to preserve the covering of L by
the affine subspaces LTi , i.e.,

π(x, t) ∈ LTi for any x ∈ LTi , t ∈ I.

Proof. Note that each point x ∈ L is representable in a unique way as

x =
∑

λiAi, where
∑

λi = 1

(the numbers λi are the barycentric coordinates of x with respect to the simplex T ).
Consider the projection p : L → T that maps a point x with barycentric coordinates {λi} to the

point p(x) whose ith barycentric coordinate is equal to max{λi, 0}.
It is easy to see that the map π(x, t) defined by

π(x, t) = (1− t)x+ tp(x)

satisfies the conditions of the lemma. �
Let {Ti} be an ordered collection of faces of the simplex T of size N . Consider the following

two sets, each equipped with a covering by N closed convex sets:

• the union
⋃N

i=1 Ti, equipped with the covering by the faces Ti from the set {Ti};
• the union

⋃N
i=1 LTi of the affine hulls LTi of the faces Ti, equipped with the covering by the

spaces LTi .

Theorem 4.2. The natural embedding
⋃

Ti →
⋃

LTi makes
⋃

Ti into a strong deformation
retract of

⋃
LTi . Moreover, the deformation retraction can be chosen to preserve the covering

of
⋃

LTi by the affine spaces LTi.

Proof. Indeed, as the required projection and its homotopy one can take the restriction of the
homotopy from Lemma 4.1 to the space

⋃
LTi . �
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4.1. Barycentric subdivision and the corresponding affine subspaces. Let Δ be a
simplicial complex and let Δ′ be its barycentric subdivision. In particular, any simplex Δi in Δ
corresponds to a vertex AΔi of Δ′.

In a vector space L, consider a collection of affinely independent points identified with the
vertices of Δ′. Then Δ′ is naturally embedded in the simplex T generated by this collection.

For a vertex Ai of Δ, let its star St(Ai) be the collection of simplices of Δ having Ai as a vertex.
Each star St(Ai) determines a face Ti of T ; it is the convex hull of the vertices of T that correspond
to the simplices in St(Ai).

Let XΔ be the union of all faces Ti ⊂ T corresponding to the vertices of Δ. Then the space
X = XΔ has a natural covering by the faces Ti. On the other hand, let Y be the union of the
affine hulls LTi of the faces Ti corresponding to the vertices of Δ. Then the space Y has a natural
covering by the subspaces LTi .

The following statement is an immediate corollary of Theorem 4.2.

Corollary 4.3. The subset X ⊂ Y is a deformation retract of Y . Moreover, the deformation
retraction respects the coverings of X by Ti and of Y by LTi.

Theorem 4.4. The nerve of the covering of X by Ti can be naturally identified with the nerve
of the covering of Y by LTi. Both of these nerves can be naturally identified with the original
simplicial complex Δ.

We can consider the barycentric subdivision Δ′ of Δ as a subcomplex of the complex of all faces
of the simplex T . Denote by Z the union of all simplices in Δ′. The space Z is equipped with the
following covering: with each vertex Ai of Δ one can associate the union Zi of all (closed) simplices
containing the vertex Ai. In other words, Zi is the union of all faces of T that contain the vertex Ai

and belong to the simplicial complex Δ′.
Observe that under the embedding Z → X the sets Zi are identified with Ti ∩ Z.

Theorem 4.5. There exists a map π : X → Z such that the following conditions hold :

(1) π maps each simplex Ti to the set Zi;

(2) π maps each simplex from Z to itself.

Proof. The set X is stratified by its covering X =
⋃

Ti in the following way. Each stratum
of this stratification is a nonempty intersection of a certain collection of the sets Ti without all
nonempty intersections of the bigger collections of sets Ti. In particular, this stratification also
stratifies the set Z ⊂ X.

The set of all strata of the above stratification can be naturally identified with the set of all
simplices of Δ. Indeed, the intersection

⋂
Tij is nonempty if and only if there is a simplex in Δ

with the vertices Aij .
In other words, the set of all strata is in one-to-one correspondence with the set of vertices of Δ′,

i.e., with the set of vertices of T .
The triangulation of X by the faces of T belonging to X is compatible with the above stratifi-

cation; i.e., each open simplex of this triangulation is contained in a certain stratum.
Consider the barycentric subdivision of the triangulation constructed above. Note that it pro-

vides a good triangulation for our stratification; i.e., each simplex from this triangulation is com-
patible in the following sense: if two strata contain two vertices of a simplex of the triangulation,
then one of the strata belongs to the closure of the other.

Now we are ready to define a map π. The map π is a map from X to Z which is linear on each
simplex of the barycentric subdivision of the natural triangulation of X and maps each vertex A of
the triangulation to the vertex of Δ′ corresponding to the stratum containing the vertex A.

One can easily check that the map just constructed satisfies all conditions of the theorem. �
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Theorem 4.6. The map π : X → Z ⊂ X is homotopic to the identity map. Denote by π̃ the
restriction of π to Z. Then π̃ maps Z to itself and this map is homotopic to the identity map.

Proof. Observe that if x ∈ Ti ⊆ X, then π(x) also belongs to Ti, as well as the entire segment
joining these two points, due to the definition of the map π. Therefore, one can define a linear
homotopy F (x, t) = (1− t)x+ tπ(x) between the identity map and the map π.

Furthermore, π̃ maps each simplex of Δ′ to itself. Hence one can define a linear homotopy
G(x, t) = (1− t)x+ tπ̃(x) between the identity map and the map π. �

4.2. Homotopy type of a union of a hyperplane arrangement. Let H = {H1, . . . ,Hs}
be a collection of affine hyperplanes in L � R

n indexed by the set [s] = {1, . . . , s}.
Definition 4.7. The nerve KH of H is the simplicial complex on s vertices v1, . . . , vs such that

a set of vertices vi1 , . . . , vik defines a simplex in KH if and only if the intersection Hi1 ∩ . . . ∩Hik is
not empty.

We will say that two hyperplane arrangements H1 and H2 are combinatorially equivalent if the
corresponding nerves KH1 and KH2 are isomorphic.

Theorem 4.8. Suppose H = {H1, . . . ,Hs} and H′ = {H ′
1, . . . ,H

′
s} are two combinatorially

equivalent hyperplane arrangements, and let X =
⋃

Hi and Y =
⋃

H ′
i be the corresponding unions

of hyperplanes. Then there exists a canonical homotopy equivalence f : X → Y .
Proof. As a canonical homotopy equivalence f : X → Y , one can take any continuous map

such that
f(x) ∈ H ′

j for every x ∈ Hj. �

In particular, there is a canonical isomorphism f∗ : H∗(X) → H∗(Y ) between the homology
groups of combinatorially equivalent hyperplane arrangements.

We will say that a collection of hyperplanes {H1, . . . ,Hs} is nondegenerate if it is a nondegenerate
collection of affine subspaces; that is, there is no proper linear subspace L ⊂ R

n parallel to all the
hyperplanes Hi.

Theorem 4.9. Let H be a nondegenerate arrangement of affine hyperplanes in R
n. Then its

union X is homotopy equivalent to a wedge of (n− 1)-dimensional spheres. The number of spheres
is equal to the number of bounded regions in R

n \X.
We will prove a more general result (see Theorem 4.13 and Corollary 4.14).
Corollary 4.10. Let L ⊃ X =

⋃
Li be a nondegenerate union of affine hyperplanes Li. Then,

if n > 1, the group Hn−1(X,Z) is a free abelian group generated by the cycles ∂Δj , where Δj is
the closure of the bounded open polyhedron representing a bounded component of L \X.

All the other groups Hi(X,Z) for i > 0 are equal to zero, and H0(X,Z) ∼= Z.
According to Corollary 4.10, every cycle Γ ∈ Hn−1(X,Z) can be represented as a linear combi-

nation
Γ =

∑
λj ∂Δj .

Moreover, each coefficient λj equals the winding number of the cycle Γ around a point aj ∈ Δj \ ∂Δj .

Corollary 4.11. Suppose L0 ⊂ L is a linear space such that L = L0 ⊕ L̂, i.e., L is a direct
sum of L̂ and L0. Let L0

i = Li ∩ L0 and X0 = X ∩ L0 =
⋃

L0
i . Then X0 is a union of a

nondegenerate arrangement of the affine hyperplanes L0
i ⊂ L0. Moreover, X = X0 × L̂; thus X is

homotopy equivalent to a wedge of (n− 1− l)-dimensional spheres, where l = dim L̂.
Now we are ready to prove Theorem 4.9. Let U ⊂ R

n be a finite union of open convex bodies:
U =

⋃
Ui. We are going to study the homotopy type of the set Rn \ U . First, we need the following

definition.
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Definition 4.12. The tail cone of a convex body U is the set of points v ∈ R
n such that the

inclusion a+ tv ∈ U holds for any a ∈ U and t ≥ 0.
One can check that for any convex set U ⊂ R

n the set tail(U) satisfies the following conditions:

• the set tail(U) is a convex closed cone in R
n; a convex set U is bounded if and only if tail(U)

is the origin O ∈ R
n;

• if tail(U) is a vector space L, then for any transversal space L1 (i.e., for any L1 such that
R
n = L ⊕ L1) the set U is representable in the form U = U1 ⊕ L, where U1 = U ∩ L1 is a

bounded convex set; that is, if tail(U) is a vector space, then one has U = U1 ⊕ tail(U) for a
certain bounded convex set U1.

If the set tail(Ui) is a linear space Li, then along with Ui we can also consider a shifted space
ai + Li ⊂ Ui, where ai is an arbitrary point in Ui.

We will prove the following theorem.
Theorem 4.13. For the set U defined above, the set R

n \ U is homotopy equivalent to the set
Rn \

⋃
{ai + Li}, where the union is taken over all indices i such that tail(Ui) is a vector space.

Suppose that in the above theorem all the linear spaces Li are equal to the same linear space L.
Denote by T a transversal subspace to L, i.e., a linear subspace in R

n such that R
n = T ⊕ L.

Corollary 4.14. Under the above assumptions, the set Rn \U is homotopy equivalent to T \{bi}
with bi = T ∩ {ai + Li}.

Note that Corollary 4.14 completely describes the homotopy type of the set R
n \

⋃
Hi, where

{Hi} is any collection of affine hyperplanes in R
n. Indeed, the complement R

n \
⋃

Hi is a union
of open convex sets. Moreover, the maximal linear subspaces contained in tail(Ui) are the same
for each Ui: each of them is equal to the intersection of all linear spaces H̃i parallel to the affine
hyperplanes Hi.

To prove the theorem, we will need some general facts about convex bodies.
Lemma 4.15. Suppose U ⊂ R

n is a bounded open convex set, X is the closure of U, and ∂X
is the boundary of X (one has X = U ∪ ∂X), and let a ∈ U be any point in U . Then ∂X is a
deformation retract of X \ {a}.

Proof. Let π : X \ {a} → ∂X be the projection of X \ {a} to ∂X from the point a. The
following map provides a deformation retraction:

F (x, t) = (1− t)x+ tπ(x), where x ∈ X \ {a}, 0 ≤ t ≤ 1. �

Corollary 4.16. Let U ⊂ R
n be an open convex set such that tail(U) is a vector space L.

Then, by definition, for any a ∈ U the shifted space a+ L belongs to U and the set X is homotopy
equivalent to the set X \ L, where X is the closure of U .

We will need the following auxiliary lemma. Let us represent R
n as R

n−1 ⊕ R
1, and let us

accordingly use the notation (x, y) for points in R
n, where x ∈ R

n−1 and y ∈ R
1.

Let y = f(x) be a continuous function on R
n−1. Denote by X ⊂ R

n the set of points (x, y) with
y ≥ f(x). Then ∂X is the graph of the function f (i.e., (x, y) ∈ ∂X if and only if y = f(x)).

Lemma 4.17. The natural projection π : X → ∂X mapping a point (x, y) to (x, f(x)) is
homotopic to the identity map.

Proof. One can consider the following homotopy:

G(x, y, t) = (1− t)(x, y) + tπ(x, y). �

Now, suppose that the set tail(U) ⊂ R
n is not a vector space; i.e., assume that there is a vector

v ∈ tail(U) such that the vector −v does not belong to tail(U).
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Let a ∈ U be an arbitrary point. Since −v is not in tail(U), there is a positive number τ such
that a− τv ∈ ∂X. Let L̃ be the supporting hyperplane of X at the point a− τv.

Let us make an affine change of variables in R
n in such a way that the hyperplane L̃ becomes

the hyperplane y = 1, the point a − τv becomes the point (0, 1), and the vector v becomes the
standard basis vector in R

1. After this change of coordinates, U turns into an open convex set in
R
n−1 ⊕ R

1 such that U belongs to the half-space y ≥ 1, and along with every point a ∈ U our
convex set U contains the entire ray a+ τv, where τ ≥ 0 and v is the vector (0, 1).

Consider the diffeomorphism g of the open half-space y > 0 to itself defined by the formula
g(x, y) = (xy, y).

Lemma 4.18. Under the diffeomorphism g, the closure X of U is mapped to the domain Y
defined by the following condition : (x, y) ∈ Y if and only if y ≥ f(x), where f is a certain continuous
function on R

n.
Proof. First, let us consider the map g̃ : ∂X → R

n−1 ⊕ {0} defined by g̃(x, y) = (xy, 0). Let us
show that g̃ is a homeomorphism between ∂X and R

n−1. For each vector x ∈ R
n−1 ⊕ {0}, consider

the set of points ∂Xx ⊂ ∂X defined by the following condition: (x0, y0) ∈ ∂Xx if and only if x0 is
proportional to x. It is easy to see that the set ∂Xx is homeomorphic to a line.

We can parametrize it by an oriented distance from the point (0, 1) (which belongs to ∂Xx for
every x) along this curve with an arbitrarily chosen orientation.

Now g̃ maps the curve ∂Xx to the line of scalar multiples of x. Moreover, this map is monotonic
and proper. Hence it provides a homeomorphism between ∂Xx and the line τx, τ ∈ R. This
argument implies that the map g̃ : ∂X → R

n−1 is a homeomorphism.
Observe that the image of ∂X under the diffeomorphism g : (x, y) �→ (xy, y) is a graph of the

function f such that the value f(x) equals the coordinate y of the point (x, y) := g̃−1(x). Then
the set X is mapped by this diffeomorphism to the domain in R

n consisting of the points (x, y)
with y ≥ f(x). �

Corollary 4.19. Let U ⊂ R
n be an open convex set such that the cone tail(U) is not a vector

space. Then the boundary ∂X of the closure X of U is homotopy equivalent to X.

5. GENERALIZED VIRTUAL POLYTOPES: DEFINITION AND RESULTS

Let Δ be a simplicial complex homeomorphic to the (n − 1)-dimensional sphere. Denote by
V (Δ) = {v1, . . . , vm} the set of vertices of Δ. In what follows, we will identify a simplex S of Δ
with the set of vertices I ⊂ V (Δ) which belong to S.

Definition 5.1. The map λ : V (Δ) → (Rn)∗ is called a characteristic map if for any vertices
vi1 , . . . , vir that belong to the same simplex of Δ the images λ(vi1), . . . , λ(vir) are linearly inde-
pendent. In particular, for any maximal simplex {vi1 , . . . , vin} the images λ(vi1), . . . , λ(vin) form a
basis of (Rn)∗.

The map λ : V (Δ) → (Zn)∗ is called an integer characteristic map if for any maximal simplex
{vi1 , . . . , vin} of Δ the images λ(vi1), . . . , λ(vin) form a basis of the lattice (Zn)∗.

Let us denote by �i the linear function λ(vi), for any i ∈ [r]. The characteristic map λ de-
fines an m-dimensional family of hyperplane arrangements AP in the following way. For any
h = (h1, . . . , hm) ∈ R

m, the arrangement AP(h) is given by

AP(h) = {H1, . . . ,Hm} with Hi = {�i(x) = hi}.

We denote by Xh the union of all hyperplanes from AP(h).
Given a subset I ∈ [m], we will denote by HI the intersection

HI =
⋂
j∈I

Hj.
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It follows from the definition of the characteristic map that HI is nonempty whenever the vertices vj
with j ∈ I belong to the same simplex.

Let Δ⊥ be the dual polyhedral complex to Δ; we define a correspondence between the faces of Δ⊥

and the strata HI in the following way: a face ΓI of Δ⊥ dual to a simplex I of Δ is associated with
the stratum HI .

Definition 5.2. We say that a map f : Δ⊥ → Xh is subordinate to a characteristic map λ if
f(ΓI) ⊂ HI for any face ΓI of Δ⊥.

Theorem 5.3. The space of maps f : Δ⊥ → Xh subordinate to a characteristic map λ is a
nonempty convex set. In particular, any two such maps are homotopic.

Proof. First, let us show the second part of the statement, assuming that a map f : Δ⊥ → Xh

subordinate to the characteristic map λ exists. Observe that HI is a convex set for any I ⊂ [m].
Therefore, for any two maps f, f ′ : Δ⊥ → Xh subordinate to the characteristic map λ, any member
of the linear homotopy between them is also subordinate to this characteristic map:

ft := (1− t)f + tf ′, t ∈ [0, 1].

Thus the space of maps f : Δ⊥ → Xh compatible with the natural coverings of Δ⊥ and Xh is
contractible (assuming it is nonempty).

To show the existence of such maps, we use the following construction. First, let us choose any
inner product on R

n. This defines a set of distinguished points xI ∈ HI given by the orthogonal
projection of the origin in R

n to the affine subspaces HI . On the other hand, the points of the
polyhedral complex Δ⊥ dual to the simplicial complex Δ, being the vertices of the barycentric
subdivision Δ′, are in a bijection with the simplices of Δ; hence they are labeled by subsets I ⊂ [m].

We construct a map fh : Δ
⊥ → Xh subordinate to the characteristic map λ as follows. First,

we define the images of the above-mentioned points vI of the complex Δ⊥ by the formula

fh(vI) = xI ,

and then we extend this map by linearity. Note that the map fh just constructed is well defined,
since (Δ, λ) is a characteristic pair (indeed, HI is nonempty whenever I corresponds to a simplex
in Δ) and is compatible with the covering of the complex Δ⊥ by the stars St(vi) in Δ′ of the vertices
vi ∈ Δ, by construction. �

The family of maps fh : Δ
⊥ → Xh has another nice property.

Corollary 5.4. In the situation as before, one has fh+h′ = fh + fh′.
Proof. The statement follows from the fact that the distinguished points xI used in the above

construction depend linearly on h ∈ R
n:

xI,h+h′ = xI,h + xI,h′. �

With every affine hyperplane arrangement AP(h) we associate a chain Δ(h) =
∑

iW (Ui, f)Ui,
where Ui are the connected components of the complement R

n \Xh and f : Δ⊥ → Xh is any map
subordinate to a characteristic map Λ. Since any two such maps are homotopic, the chain Δ(h) is
well defined.

Definition 5.5. We will call the chain Δ(h) a generalized virtual polytope associated with the
simplicial complex Δ, the characteristic map Λ, and the vector h ∈ R

m. We denote by PΔ,Λ � R
m

the space of all generalized virtual polytopes associated with the simplicial complex Δ and charac-
teristic map Λ.

Remark 5.6. Classical virtual polytopes are piecewise linear functions defined not necessarily
in the complements of unions of affine hyperplane arrangements (convex chains); hence they contain
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more information than a chain Δ(h). However, in this paper we are interested only in the volumes
of generalized virtual polytopes and integrals over them, so it is enough for us to work with the
chain Δ(h). We will study other valuations on the space of generalized virtual polytopes in the
future works.

Integration over generalized virtual polytopes. Let α be an (n − 1)-form on R
n given

by the formula
α = P1 d̂x1 ∧ . . . ∧ dxn + . . . + Pn dx1 ∧ . . . ∧ d̂xn.

Here, by d̂xi we mean that the term dxi is missing. The following theorem is obvious.
Theorem 5.7. If all the coefficients Pi of the form α are homogeneous polynomials of de-

gree k (polynomials of degree at most k) on R
n, then the function

∫
Δ⊥ f∗α is a homogeneous

polynomial of degree k + n − 1 (a polynomial of degree at most k + n − 1) on the space of maps
f : Δ⊥ →

⋃
AP(h)Hi subordinate to the corresponding characteristic map.

Proof. The proof is similar to that of Theorem 2.1, since by Corollary 5.4 the family of maps fh
can by chosen so that fh1 + fh2 = fh1+h2 . �

Let U be a bounded region in R
n \

⋃
AP(h)Hi and W (U, f) be the winding number for a map f

as before. The next proposition follows from the Stokes theorem.
Proposition 5.8. Let α be as before and dα = Qω, where Q is a polynomial of degree at

most k (homogeneous polynomial of degree k) on R
n and ω = dx1 ∧ . . . ∧ dxn is the standard

volume form on R
n. Then the identity

∑
W (U, f)

∫

U

Qω =

∫

Δ⊥

f∗α

holds for the map f : Δ⊥ →
⋃

AP(h)Hi subordinate to the corresponding characteristic map.
In particular,

∑
W (U, f)

∫
U Qω is a polynomial of degree at most k + n − 1 (homogeneous

polynomial of degree k + n − 1) on the space of maps f : Δ⊥ →
⋃

AP(h)Hi subordinate to the
corresponding characteristic map.

Given a polynomial Q on R
n and a generalized virtual polytope f : Δ⊥ →

⋃
AP(h)Hi, let us

denote by IQ(f) the integral ∑
W (U, f)

∫

U

Qω.

The following lemma computes the (mixed) partial derivatives of IQ.
Lemma 5.9. Let f : Δ⊥ →

⋃
AP(h)Hi be a generalized virtual polytope associated with a sim-

plicial complex Δ on s vertices. Suppose I = {i1, . . . , ir} ⊆ {1, . . . , s} is a subset such that the
vertices vi1 , . . . , vir do not form a simplex in Δ, and let k1, . . . , kr be positive integers. Then we have

∂k1
i1

. . . ∂kr
ir
(IQ)(f) = 0.

However, if r = n and the vertices vi1 , . . . , vin generate a simplex in Δ dual to a vertex A ∈ Δ⊥,
then we have

∂I(IQ)(f) = sgn(I)Q(A)|det(ei1 , . . . , ein)|.

Proof. By the linearity of derivation, it is enough to compute the partial derivatives for each
summand W (U, f)

∫
U Qω separately.

In the first case, when the vertices vi1 , . . . , vir do not form a simplex in Δ, the intersection of
the corresponding hyperplanes Hi1 , . . . ,Hir does not correspond to a vertex of U , for any bounded
region U in R

n \
⋃

AP(h)Hi with W (U, f) �= 0. Hence ∂k1
i1

. . . ∂kr
ir
(IQ)(f) = 0 by [11, Lemma 6.1].
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On the other hand, if the vertices vi1 , . . . , vin generate a simplex in Δ, then there exists exactly
one region Ui in R

n \
⋃

AP(h)Hi that has the intersection A = Hi1 ∩ . . . ∩Hin as its vertex. Then
by [11, Lemma 6.1] we get

∂I(IQ)(f) = ∂I

∫

Ui

Qω = sgn(I)Q(A)|det(ei1 , . . . , ein)|. �

As an immediate consequence of Lemma 5.9 we obtain the following statement.
Corollary 5.10. Let f : Δ⊥ →

⋃
AP(h)Hi be a generalized virtual polytope associated with a

simplicial complex Δ on s vertices. Suppose I = {i1, . . . , ir} ⊆ {1, . . . , s} is a subset such that the
vertices vi1 , . . . , vir do not form a simplex in Δ, and let k1, . . . , kr be positive integers. Then we have

∂k1
i1

. . . ∂kr
ir

Vol(f) = 0.

However, if r = n and the vertices vi1 , . . . , vin generate a simplex in Δ dual to a vertex A ∈ Δ⊥,
then we have

∂I Vol(f)(f) = sgn(I)|det(ei1 , . . . , ein)|.

6. COHOMOLOGY OF GENERALIZED QUASITORIC MANIFOLDS

In this section we will describe the cohomology rings of a class of torus manifolds called gen-
eralized quasitoric manifolds. The results of this section were published in part in [10, 1]. Let
T � (S1)n be a compact torus with character lattice M and N = M∨. Suppose K is an abstract
simplicial complex of dimension n− 1 on the vertex set [m] = {1, 2, . . . ,m}. Recall that its moment–
angle complex ZK is defined to be the (m + n)-dimensional cellular subspace in the unit polydisc
(D2)m ⊂ C

m given by the formula
⋃

I∈K
∏m

i=1 Yi, where Yi = D2 if i ∈ I and Yi = S1 otherwise.
There is a natural (coordinatewise) action of the compact torus (S1)m on ZK , and the orbit

space ZK/(S1)m is homeomorphic to the cone over the barycentric subdivision of K.
In what follows we assume that K = KΣ is a star-shaped sphere, i.e., an intersection of a complete

simplicial fan Σ in R
n � N ⊗Z R with the unit sphere Sn−1 ⊂ R

n. In this case, the moment–angle
complex ZK acquires a smooth structure (see [23]).

Let further Λ: Σ(1) → N be a characteristic map, i.e., a map such that the collection of vectors

Λ(ρ1), . . . ,Λ(ρk)

can be completed to a basis of the cocharacter lattice N whenever ρ1, . . . , ρk generate a cone in Σ.
Then the (m− n)-dimensional subtorus HΛ := ker expΛ ⊂ (S1)m acts freely on ZK and the smooth
manifold XΣ,Λ := ZK/HΛ will be called a generalized quasitoric manifold.

Our description of the cohomology rings of XΣ,Λ will be given in three steps:

1. First, we give a cellular decomposition of XΣ,Λ of a special type and show that H∗(XΣ,Λ) is
generated by the classes dual to the classes of characteristic submanifolds of codimension 2
in XΣ,Λ.

2. Then we deduce two sets of relations in the intersection ring of XΣ,Λ between the classes of
characteristic submanifolds of codimension 2 in XΣ,Λ.

3. Finally, we prove a topological version of the BKK theorem for XΣ,Λ and use it to get a
Pukhlikov–Khovanskii type description for the integral cohomology ring H∗(XΣ,Λ).

Remark 6.1. Note that steps 2 and 3 above could be successfully made in a much more
general class of torus manifolds. However, in this more general case the algebra obtained by a
Pukhlikov–Khovanskii description might be different from the cohomology ring. Indeed, the algebra
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computed via the self-intersection polynomial is the Poincaré duality quotient of the subalgebra of
the cohomology ring generated by the classes dual to the classes of characteristic submanifolds of
codimension 2 (see [1] for details).

In what follows, we will always assume that our generalized quasitoric manifolds are omniori-
ented ; as in the case of a quasitoric manifold, we say that XΣ,Λ is omnioriented if an orientation is
specified for XΣ,Λ and for each of the m codimension 2 characteristic submanifolds Di. The choice
of this extra data is convenient for two reasons. First, it allows us to view the circle fixing Di as
an element in the lattice N = Hom(S1, T n) � Z

n. But even more importantly, the choice of an
omniorientation defines the fundamental class [XΣ,Λ] of XΣ,Λ as well as the cohomology classes [Di]
dual to the characteristic submanifolds.

We further assume that Σ ⊂ R
n and NR � R

n are endowed with orientation. This defines a
sign for each collection of rays ρi1 , . . . , ρin forming a maximal cone of Σ in the following way. Let
I = {i1, . . . , in} be a set of indices ordered so that the collection of rays ρi1 , . . . , ρin is positively
oriented in R

n. Then
sgn(I) = det(Λ(ρi1), . . . ,Λ(ρin)) = ±1.

Finally, as before, with a characteristic pair (Σ,Λ) we associate a space of generalized virtual
polytopes PΣ,Λ � R

m. With any generalized virtual polytope Δ(h) ∈ PΣ,Λ we associate an element
of H2(XΣ,Λ) as follows:

Δ(h) �→ h1[D1] + . . .+ hm[Dm] ∈ H2(XΣ,Λ),

where D1, . . . ,Dm are the codimension 2 characteristic submanifolds oriented according to the given
omniorientation of XΣ,Λ.

6.1. Cellular decompositions of generalized quasitoric manifolds. To provide a cellular
decomposition of the generalized quasitoric manifold XΣ,Λ, let us first give a slightly different
description of the moment–angle complex ZK for a star-shaped sphere K = KΣ. Observe that the
moment–angle complex is given as a disjoint union of strata ZK =

⊔
σ∈Σ Hσ, where

Hσ = ZK ∩
( ⋂

ρi∈σ
{zi = 0}

)
∩

( ⋂
ρj /∈σ

{zj �= 0}
)

⊂ C
m.

Our construction of a cell decomposition of XΣ,Λ is a slight generalization of the Morse-theoretic
argument introduced in [14] and applied to quasitoric manifolds in [7]. Since we do not assume that
Σ is a normal fan for a certain polytope, we cannot use the generic linear functions as in [14].
Instead, let us choose a vector v ∈ R

n in a general position with respect to Σ, i.e., a vector v which
belongs to the interior of a full-dimensional cone of Σ.

Let τ1, . . . , τs be cones of dimension n in Σ. For a maximal cone τ , we will say that a face σ
of τ is incoming with respect to the vector v if the intersection τ ∩ (σ + v) is unbounded. Let us
further define the index ind(τ) of a maximal cone τ to be the number of incoming rays of τ .

With each maximal cone τ we associate a disjoint union of open cells of ZK via the formula

Ũτ =
⊔
σ

Hσ,

where the union is taken over all incoming faces σ of τ . Since each cone σ is incoming for a unique
cone τ of maximal dimension, we get a cell decomposition

ZK =
s⊔

i=1

Ũτi .
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It is easy to see that the cells Ũτ are invariant under the action of H � (S1)m−n and that

Ũτ � (D2)ind(τ) × (S1)m−n.

Moreover, the action of H is free and transitive on the second factor in (D2)ind(τ) × (S1)m−n; hence
we get

XΣ,Λ =
s⊔

i=1

Ũτi/H,

where Ũτi/H � (D2)ind(τi)

Theorem 6.2. Let XΣ,Λ be a generalized quasitoric manifold. Then XΣ,Λ has a cellular de-
composition with only even-dimensional cells. The cells in this decomposition are in a bijection with
the maximal cones τ in Σ. The dimension of the cell corresponding to a cone τ is 2 ind(τ).

Corollary 6.3. The Euler characteristic of the manifold XΣ,Λ is equal to the number of max-
imal cones in Σ.

6.2. Relations between characteristic submanifolds. In this subsection we will deduce
two types of relations between classes of codimension 2 characteristic submanifolds in the inter-
section ring of a manifold XΣ,Λ. In the following proposition we show that the Stanley–Reisner
relations hold in H∗(XΣ,Λ).

Proposition 6.4. For codimension 2 characteristic submanifolds Di1 , . . . ,Din , in the coho-
mology ring of a generalized quasitoric manifold XΣ,Λ one has

[Di1 ] . . . [Din ] =

{
sgn(I)[XΣ,Λ]

∗ if ρi1 , . . . , ρin form a cone in Σ,

0 otherwise.

Proof. Indeed, in the cohomology ring of the generalized quasitoric manifold XΣ,Λ, we have
[Di1 ] . . . [Din ] = (−1)v [XΣ,Λ]

∗, where v = Di1 ∩ . . . ∩Din ∈ XΣ,Λ is a fixed point and (−1)v is its
sign obtained by comparing two orientations on TvXΣ,Λ: one induced by the coorientations of the
characteristic submanifolds Di and the other induced by the representation of T n := Tm/H in the
tangent space TvXΣ,Λ

∼= C
n.

On the other hand, the weights of the tangential representation of the compact torus T n at
the fixed point v form a lattice basis dual to the basis (Λ(ρi1), . . . ,Λ(ρin)). Therefore, (−1)v =
det(Λ(ρi1), . . . ,Λ(ρin)) = sgn(I), which completes the proof. �

To obtain linear relations, we need to analyze further the construction of generalized quasitoric
manifolds. There are natural (S1)m-equivariant line bundles L1, . . . , Lm on ZK . For each integer
vector k = (k1, . . . , km) ∈ Z

m, the tensor product

Lk = Lk1
1 ⊗ . . .⊗ Lkm

m

descends to a complex line bundle L̃k on XΣ,Λ. Moreover, if k ∈ Z
m is such that the corresponding

character acts trivially on HΛ ⊂ (S1)m, the descendant bundle L̃k is topologically trivial.
It is easy to see that there is a smooth section of L̃k with the degenerate locus given by∑m

i=1 ki[Di]. By exactness of the sequence

0 → M
Λ∗
−→ Z

m → MHΛ
→ 0,

the characters k acting trivially on HΛ are identified with the character lattice M of T with
ki = χ(vi) for χ ∈ M and vi = Λ(ρi). Thus we obtain the following proposition.
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Proposition 6.5. For any character χ ∈ M, the following linear relation in H2(XΣ,Λ) holds:
m∑
i=1

χ(vi)[Di] = 0,

where vi := Λ(ρi) for 1 ≤ i ≤ m.
Proof. Indeed, the descendant complex line bundle L̃χ(v1),...,χ(vm) is trivial, and hence its first

Chern class is equal to zero:

c1(L̃χ(v1),...,χ(vm)) =

m∑
i=1

χ(vi)[Di] = 0. �

6.3. Topological version of the BKK theorem. Let us start with an important observa-
tion: to describe the cohomology ring of a generalized quasitoric manifold, it is enough to compute
the self-intersection polynomial

h1[D1] + . . .+ hm[Dm] �→
〈
(h1[D1] + . . . + hm[Dm])m, [XΣ,Λ]

〉

on the space of all linear combinations of classes of codimension 2 characteristic submanifolds. This
is the subject of the following theorem. Theorem 6.6 is closely related to [10, Lemma 8.6].

Theorem 6.6. Let XΣ,Λ be a generalized quasitoric manifold with codimension 2 characteristic
submanifolds D1, . . . ,Dm. Then the following identity holds:

〈
(h1[D1] + . . .+ hm[Dm])m, [XΣ,Λ]

〉
= n! Vol(fh),

where fh ∈ PΣ,Λ is a generalized virtual polytope associated with the simplicial complex KΣ, the
characteristic map Λ, and the set of parameters h = (h1, . . . , hm).

Proof. Let us identify the space of all linear combinations h1[D1] + . . . + hm[Dm] with the
space of generalized virtual polytopes PΣ,Λ. Under this identification, both self-intersection and
volume functions are homogeneous polynomials of degree n on PΣ,Λ. Let us denote them by S :
PΣ,Λ → R and Vol : PΣ,Λ → R, respectively.

To show the equality S(h) = n! Vol(h), it is enough to prove the equality of all (mixed) partial
derivatives of S and Vol of degree n:

∂k1
i1

. . . ∂ks
is
S(h) = n! ∂k1

i1
. . . ∂ks

is
Vol(h),

where ∂ij = ∂/∂hij and
∑s

j=1 kij = n.
Let us call the number

∑s
i=1(ki − 1) the multiplicity of the monomial ∂k1

i1
. . . ∂ks

is
. In particular,

a monomial has multiplicity 0 if and only if it is square free. We will prove the equality of mixed
partial derivatives by induction on the multiplicity of a differential monomial.

For square free monomials, the equality follows from the first part of Corollary 5.10 and Propo-
sition 6.4. Indeed, by Corollary 5.10, in the case when r = n and the vertices vi1 , . . . , vin form a
simplex in Δ dual to a vertex A ∈ Δ⊥, we have

∂i1 . . . ∂in Vol(h) =

{
sgn(i1, . . . , in) if ρi1 , . . . , ρin span a cone in Σ,

0 otherwise.

On the other hand, ∂i1 . . . ∂inS(h) is equal to the coefficient of ti1 . . . tin in the polynomial
S(h+ (t1, . . . , tm)). We get

S(h+ (t1, . . . , tn)) =
〈(
(h1 + t1)[D1] + . . .+ (hm + tm)[Dm]

)m
, [XΣ,Λ]

〉
= ti1 . . . tin · n! ·

〈
[Di1 ] . . . [Din ], [XΣ,Λ]

〉
+ . . . .
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Hence by Proposition 6.4 we get

∂i1 . . . ∂inS(h) =

{
n! sgn(i1, . . . , in) if ρi1 , . . . , ρin span a cone in Σ,

0 otherwise.
Now, let us assume that the equality of mixed partial derivatives holds for all differential mono-

mials of multiplicity r − 1. Let ∂k1
i1

. . . ∂ks
is

be a differential monomial of multiplicity r with k1 ≥ 1.
We can assume that ρi1 , . . . , ρis span a cone in Σ, since otherwise

∂k1
i1

. . . ∂ks
is
S(h) = n! ∂k1

i1
. . . ∂ks

is
Vol(h) = 0.

In that case, there exists a character χ ∈ M such that

〈χ,Λ(ρi1)〉 = 1, 〈χ,Λ(ρi2)〉 = 0, . . . , 〈χ,Λ(ρis)〉 = 0.

Therefore, since the volume is invariant under the translation of a generalized virtual polytope,
we get

∂k1
i1

. . . ∂ks
is

Vol(h) = −
∑
l �=ij

〈χ,Λ(ρl)〉 ∂l∂k1−1
i1

. . . ∂ks
is

Vol(h)

and similarly by Proposition 6.5

∂k1
i1

. . . ∂ks
is
S(h) = −

∑
l �=ij

〈χ,Λ(ρl)〉 ∂l∂k1−1
i1

. . . ∂ks
is
S(h).

Moreover, the differential monomials on the right-hand side of the expressions above have multi-
plicities less than r, so the equality

∂k1
i1

. . . ∂ks
is
S(h) = n! ∂k1

i1
. . . ∂ks

is
Vol(h)

follows from the induction hypothesis. �
We will finish this subsection by providing a different interpretation of Theorem 6.6. Let us first

recall the classical interpretation of the BKK theorem for toric varieties. The Newton polyhedron
Δ(f) ⊂ R

n of a Laurent polynomial f =
∑

aix
ki is the convex hull of the vectors ki with ai �= 0.

For a fixed polytope Δ, let EΔ be a finite-dimensional vector space of Laurent polynomials f such
that Δ(f) ⊂ Δ. The BKK theorem gives the number of solutions of the system f1 = . . . = fn = 0
in (C∗)n for general Laurent polynomials with fixed Newton polyhedra Δ1, . . . ,Δn.

Theorem 6.7 (BKK theorem). Let Δ1, . . . ,Δn — be fixed integer polyhedra and f1, . . . , fn be
generic Laurent polynomials such that Δ(fi) ⊂ Δi for 1 ≤ i ≤ n. Then all the solutions of the
system f1 = . . . = fn = 0 in (C∗)n are nondegenerate and the number of solutions is equal to

n! Vol(Δ1, . . . ,Δn),

where Vol is the mixed volume function of virtual polytopes.
One can reformulate Theorem 6.6 in a similar way. Let Δ1, . . . ,Δn be generalized virtual

polytopes in PΣ,Λ associated with a generalized quasitoric manifold XΣ,Λ. Let LΔi be a line bundle
associated with the generalized virtual polytope Δi and let EΔi = Γ(XΣ,Λ, LΔi) be the space of
smooth sections of LΔi . Then Theorem 6.6 can be reformulated in the following way.

Theorem 6.8. Let Δ1, . . . ,Δn be fixed generalized virtual polytopes from PΣ,Λ and s1, . . . , sn
be generic sections of LΔ1 , . . . , LΔn with si ∈ EΔi for 1 ≤ i ≤ n. Then all the solutions of the
system s1 = . . . = sn = 0 in XΣ,Λ are nondegenerate and the number of solutions counted with signs
is equal to

n! Vol(Δ1, . . . ,Δn),

where Vol is the mixed volume function of generalized virtual polytopes.
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Remark 6.9. Note that in the algebraic case the multiplicity of each nondegenerate root
is equal to 1; however, in the case of smooth sections si ∈ Γ(XΣ,Λ, LΔi), the multiplicity of a
nondegenerate root might be equal to −1. Nevertheless, the number of solutions counted with signs
can still be computed in terms of a mixed volume.

6.4. Pukhlikov–Khovanskii type description. In this subsection we use the approach
introduced by A. V. Pukhlikov and the third author for the computation of cohomology rings. The
key ingredient of such a description is an exact computation of Macaulay inverse systems for graded
algebras with Poincaré duality generated in degree 1.

We will call a graded commutative algebra A =
⊕n

i=0 Ai over a field K of characteristic 0
a Poincaré duality algebra if

• A0 � An � K;
• the bilinear map Ai ×An−i → An is nondegenerate for any i = 0, . . . , n (Poincaré duality).

The main example of a Poincaré duality algebra arises as follows. Let X be a smooth
closed orientable manifold of dimension 2n. Then the algebra of even-degree cohomology classes
A =

⊕n
i=0H

2i(X) is a Poincaré duality algebra. In particular, since for a generalized quasitoric
manifold XΣ,Λ one has H2i+1(XΣ,Λ) = 0 for all i ≥ 0, its cohomology ring H∗(XΣ,Λ) is also a
Poincaré duality algebra. The next theorem yields a description of Poincaré duality algebras.

Theorem 6.10. Let A be a Poincaré duality algebra generated (as an algebra) by the elements
from A1 = K〈v1, . . . , vr〉 (i.e., by elements of degree 1). Then

A � K[t1, . . . , tr]/

{
p(t1, . . . , tr) ∈ K[t1, . . . , tr] : p

(
∂

∂x1
, . . . ,

∂

∂xr

)
f(x1, . . . , xr) = 0

}
,

where we identify A1 with K
r via a basis v1, . . . , vr and f : A1 � K

r → K is a polynomial given by
the formula

f(x1, . . . , xr) = (x1v1 + . . .+ xrvr)
n ∈ An � K.

Theorem 6.10 was used in [25] to give a description of the cohomology ring of a smooth projective
toric variety. Later, it was used in [13] to provide a description of the cohomology rings of full flag
varieties G/B. A more general version of Theorem 6.10 has been obtained recently in [16] and used
in [11, 15] to give a description of the cohomology rings of toric and quasitoric bundles.

Theorem 6.10 admits a coordinate-free reformulation. Indeed, the ring K[t1, . . . , tr] in Theo-
rem 6.10 can be identified with the ring of differential operators with constant coefficients Diff(A1)
on A1. Hence the description of the algebra A becomes

A � Diff(A1)/Ann(f),

where Ann(f) = {D ∈ Diff(A1) : D · f = 0} is the annihilator ideal of f .
Theorem 6.11. Let XΣ,Λ be a generalized quasitoric manifold and let PΣ,Λ be the space of

generalized virtual polytopes associated with it. Then the cohomology ring H∗(XΣ,Λ) can be com-
puted as

H∗(XΣ,Λ) = Diff(PΣ,Λ)/Ann(Vol),

where Diff(PΣ,Λ) is the ring of differential operators with constant coefficients on PΣ,Λ and Ann(Vol)
is the annihilator ideal of the volume polynomial.

Proof. By Theorem 6.2, the cohomology ring H∗(XΣ,Λ) is generated by the classes of codimen-
sion 2 characteristic submanifolds in XΣ,Λ. Hence there exists a surjection Diff(PΣ,Λ) → H∗(XΣ,Λ)
with a kernel given, by Theorem 6.10, as the annihilator ideal of the self-intersection polynomial S(h)
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of classes of codimension 2 characteristic submanifolds. However, by Theorem 6.6, S(h) = n! Vol(h)
and hence

H∗(XΣ,Λ) = Diff(PΣ,Λ)/Ann(S) = Diff(PΣ,Λ)/Ann(Vol). �
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